

PHARMACYFRIDAY.COM

Ketamine for Treatment of Acute Agitation

Introduction

- 1. Ketamine is a sedative used for patients with extreme/refractory undifferentiated agitation
- 2. Indications for utilizing ketamine for emergent sedation of agitated patients include
 - a. Patient poses and immediate threat to patient and healthcare provider safety (RASS +4)
 - b. Failure and/or futility of alternative non-pharmacologic de-escalation strategies
 - c. Absence of IV access
 - d. Not a candidate for intramuscular antipsychotics and/or benzodiazepines due to onset of action

Pharmacology			
Properties	Rapid acting general anesthetic producing cataleptic-like state due to antagonism of N-methyl-D-aspartate (NMDA) receptors in the central nervous system. • Ketamine also has significant analgesic/dissociative properties at lower doses		
Dose	2-5 mg/kg IM to a max single dose of 500mg 1-2 mg/kg IV		
Administration	IM: Inject deep IM into large muscle (glute or vastus lateralis muscle) IV: Administer over at least 60 seconds		
Formulation	10 mg/mL, 50 mg/mL, 100 mg/mL *must use 100 mg/mL for IM administration to reduce volume		
PK/PD (for amnestic effects)	Onset: 3-5 mins IM; <1 minutes IV Duration: 15-25 mins IM; 5-10 minutes IV Bioavailability: 93% IM Metabolism: Extensively through hematic N-demethylation Elimination: Greater than 90% urine, <5% feces		
Adverse Effects	 Hypertension Tachycardia Hypersalivation Nausea and vomiting Laryngospasm Emergence phenomenon during recovery phase Increased muscle function (hyperactivity, twitching, rigidity) 		
Contraindications	Significant hypertension may be hazardous, ACS, ADHF, and unstable dysrhythmia		
Warnings and Considerations			

Overview of Evidence				
Author, year	Design (sample size)	Intervention & Comparison	Outcome	
Lin et al., 2020	Prospective, randomized, pilot (n=93)	Ketamine 4 mg/kg IM or 1 mg/kg IV Haloperidol 5-10 mg IM/IV + lorazepam 1-2 mg IM/IV	Ketamine achieved greater sedation within 5 and 15 minutes (22% vs 0% at 5 mins; 66% vs 7% at 15 mins)	
Mankowitz et al., 2018	Systematic review (n=650)	Ketamine IV or IM	 Mean time to sedation was 7.21min and effective in 68.5% of patients 30.5% of patients required intubation, but not all secondary to ketamine administration 	
Cole et al., 2016	Prehospital prospective, observational (n=146)	Haloperidol 10 mg IM Ketamine 5 mg/kg IM	 Median time to adequate sedation was faster with ketamine (5 min) vs haloperidol (17 min) Intubation rates were higher with ketamine (39%) than haloperidol (4%), as well as more complications (49% vs 5%, respectively) 38% hypersalivation in ketamine group 	
lsbister et al., 2016	Subgroup analysis from DORM II study; prospective, observational (n=49)	Ketamine as rescue treatment after Droperidol alone Droperidol + DZP or MDZ Midazolam alone	 Median time to sedation post-ketamine was 20 minutes (IQR 10-30) 3 patients had adverse reactions after ketamine (vomiting n=2; desaturation n=1) 	
Riddell et al., 2016	Prospective, observational (n=106)	Ketamine Lorazepam, midazolam, haloperidol, or benzodiazepine + haloperidol	Ketamine resulted in a greater number of patients with no agitation at 5 minutes than other medications	
Scheppke et al., 2014	Retrospective chart review (n=52)	*Recommended midazolam 2-2.5 mg IM or IV following ketamine for emergence reaction	 96% of patients obtained sedation, mean time to sedation was 2 minutes 3 patients experienced significant respiratory depression About ½ of patients received midazolam 	
Trials in Progress				
Barbic et al., Completed March 2020, results pending	Parallel, prospective, randomized, controlled	Ketamine 5mg/kg IM Midazolam 5mg IM + haloperidol 5mg IM	Primary: Time to adequate sedation Secondary: safety and tolerability, requirement of rescue medication	

DZP= Diazepam; MDZ= Midazolam

Conclusions

- 1. Ketamine has been shown to be effective with a quick time to sedation but is not without risks, including respiratory depression
- 2. Used ketamine with caution in patients who have an underlying psychiatric disorder
- 3. Ketamine should be reserved for specific patient populations and as last line for patient/provider safety

References

- 1. Ketamine. Micromedex [Electronic version].
- Lin M, et al. Am J Emerg Med. 2020. https://doi.org/10.1016/ j.ajem.2020.04.013.
- 3. Mankowitz WL, et al. J Emerg Med. 2018;55(5):670-81.
- 4. Cole JB, et al. Clin Toxicol (Phila). 2016;54(7):556–562.
- 5. Isbister GK, et al. Ann Emerg Med. 2016;67(5):581–587.
- 6. Riddell J, et al. Am J Emerg Med. 2017.
 - http://dx.doi.org/10.1016/j.ajem.2017.02.026
- 7. Scheppke KA, et al. WestJEM. 2014;15(7);736-41.

 Barbic D, et al. Trials. 2018;19(1):651. Published 2018 Nov 26. doi:10.1186/s13063-018-2992-x