

Fosphenytoin vs Keppra for Status Epilepticus

Introduction

- 1. Status epilepticus is a neurological emeregnecy that required urgent assessment and treatment with pharmacologic agents
- 2. Lorazepam and diazepam are short-acting drugs that can produce immediate effects.
- 3. Treatment with another long-acting anticonvulsant drug is necessary to prevent recurrent convulsions.
- 4. Use of IV phenytoin (PHT) in the treatment of status epilepticus dates back to the 50s with fosphenytoin (FPHT) being the primary agent in some institutions.
- 5. However, both PHT and FPHT can induce adverse reactions such as a reduction in blood pressure, arrhythmia, and allergic symptoms.

Pharmacology				
Properties	Phenytoin/ Fosphenytoin	Levetiracetam (Keppra)		
Dose	20 mg/kg/PE (max 1500 mg)	1-4.5 g IV (40-60 mg/kg)*		
Administration	Max IV fusion PHT 50 mg/min FPHT 150 mg/min	1g IV Push ~2 min** 1.5-2g IV over 7 min** (2-5 mg/kg/min)		
Formulation	IV/PO	IV/PO		
PK/PD	Onset: ~30 min*** Half Life: 12-28 hr Excreted: >90% in urine	Onset: 30-45 min Half-life: 6-8 hr Excreted: 66% renal		
Adverse Effect	Phlebitis, hypotension, bradycardia & dysrhythmias	Abnormal behavior Dizziness Irritability		
Drug Interactions and warnings	Major CYP3A4 Inducer (↓ drug levels)			

Compatibility	PHT – only D5W FPHT- D5W or NS	D5W or NS

*GHS has utilized this administration based on clinical experience

**PE= Phenytoin equivalents

** Fosphenytoin takes 15 mins to be metabolized to active metabolite in addition to the infusion time

Overview of Evidence				
Author, Year	Design/ sample size	Dosing regimen	Outcome	
ESETT	RCT N= >	VPA 30 mg/kg (max 3000 mg) vs LEV 60 mg/kg (max 4500mg) vs PHT 20 mg/kg (max 1500 mg)	Result expected 2020	
Nakamura, 2017	*Respective analysis/ n=63	LEV 1000 mg vs FPHT 22.5 mg/kg	No difference in control of seizure(81 vs 85.1%, p=0.69), adverse effects, or transition to PO antiepileptic drug	
Gujjar et al, 2017	*Prospective, open-label trial/ n=52	LEV 30 mg/kg vs PHT 20 mg/kg	LEV displayed no statistically significant difference than PHT in SE Sequential use of these 92–97% of cases controlled without anesthetic agents.	
Chakravarthi, 2017	*RCT n=44	LEV 20 mg/kg vs PHT 20 mg/kg	Both LEV and PHT were equally effective at termination of seizure activity within 30min and recurrence of seizures within 24 hours	
Mundlamuri, 2015	RCT/ n=150	VPA 30 mg/kg vs LEV 25 mg/kg vs PHT 20 mg/kg	No statistically significant difference in control of SE between VPA (68%), PHT (68 %,) and LEV (78%).	
Alvarez et al, 2011	Retrospective analysis/ n=466	VPA 20 mg/kg LEV 20 mg/kg PHT 20 mg/kg	VPA controlled SE in 74.6%, PHT in 58.6%, and LEV in 51.7% of episodes LEV failed more often than VPA [odds ratio (OR) 2.69	

* Did not reach power according to sample size analysis or did not mention in methods

<u>References</u>

- 1. Phenytoin. Micromedex [Electronic version]. Greenwood Village, CO: Truven Health Analytics. Retrieved November 12, 2018, from http://www.micromedexsolutions.com/
- 2. Levetiracetam. Micromedex [Electronic version].Greenwood Village, CO: Truven Health Analytics. Retrieved November 12, 2018, from http://www.micromedexsolutions.com/
- 3. Alvarez V. Second-line status epilepticus treatment: comparison of phenytoin, valproate, and levetiracetam. Epilepsia. 2011 Jul;52(7):1292-

6.

- 4. Chakravarthi S. Levetiracetam versus phenytoin in management of status epilepticus. J Clin Neurosci. 2015 Jun;22(6):959-63.
- Mundlamuri RC. Management of generalised convulsive status epilepticus (SE): A prospective randomised controlled study of combined treatment with intravenous lorazepam with either phenytoin, sodium valproate or levetiracetam--Pilot study. Epilepsy Res. 2015 Aug;114:52-

8.

- 6. Gujjar AR. Intravenous levetiracetam vs phenytoin for status epilepticus and cluster seizures: A prospective, randomized study. Seizure. 2017 Jul;49:8-12.
- 7. Nakamura K. Efficacy of levetiracetam versus fosphenytoin for the recurrence of seizures after status epilepticus. Medicine (Baltimore). 2017 Jun;96(25):e7206
- 8. Bleck T. The established status epilepticus trial 2013. Epilepsia. 2013 Sep;54 Suppl 6:89-92.